Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bark beetle outbreaks have impacted millions of acres of conifer forests in Colorado and across western North America, which has altered forest structure and function. These alterations may have significant impacts on the ability of forests to fulfill resource requirements for species that utilize them or modify how they use forests to meet these needs. Ungulates in the southern Rocky Mountains utilize conifer forests to fulfill different aspects of their ecologies. However, there is currently a limited understanding of the unique impacts bark beetle outbreaks have on each species. Using GPS location data for mule deer (Odocoilus hemionus), elk (Cervus canadensis), and bighorn sheep (Ovis canadensis) we created third and fourth order resource selection functions using a use-availability framework. Measures of the beetle kill, along with topographic covariates, were derived from remotely sensed data. Preliminary results suggest that measures of outbreak age, size, severity, and heterogeneity all impact ungulate use of forested areas, however these patterns vary across scale and by species. General trends indicate that older and more severe patches of beetle kill forests with moderate outbreak heterogeneity are selected for by ungulates. Understanding the dynamics of ungulate resource selection under these circumstances is critical to inform both wildlife and forest management strategies, as the impacts of beetle-kill continue to evolve and expand across the west.more » « less
-
Extreme single-day fire spread events are associated with warmer and drier fire seasons and are expected to increase in the future. However, our understanding of the post-fire landscape outcomes of such events is limited. Here, we ask whether extreme events burn more severely or produce landscape patterns that are less conducive to forest recovery. To identify extreme single-day fire spread events, we used satellite fire detections to create day of burning (DOB) maps for 633 fire events >400 ha within forested ecoregions of the southwestern United States. We categorized daily rates of spread as extreme (top 2.5% of events; >4901 ha/day) and non-extreme (bottom 97.5%, <4901 ha/day). We contrasted satellite-measured burn severity and a suite of high severity patch landscape metrics between extreme and non-extreme spread events. We found that extreme single-day fire spread events were associated with increased severity, a greater proportion of area burned severely, and a higher percentage of like adjacencies between high severity pixels. Average distances from high severity patch interiors to edges were also greater in extreme single-day spread events. Additionally, area-weighted mean patch size and total core area of high severity patches were higher for fires containing one or more extreme single-day spread events. Larger and more homogenous high-severity patches produced during extreme events have been shown to limit tree seedling establishment, inhibiting forest recovery and facilitating vegetation type conversion. These landscape outcomes are expected to be magnified under future climate as extreme fire spread becomes more prevalent, accelerating fire-driven forest loss across the southwestern US.more » « less
-
Climate change and land-use legacies have caused a shift in wildfires and post-fire growing conditions. These changes have strong potential to diminish the resilience of many ecosystems, with cascading effects and feedbacks across taxa. Piñon-juniper (PJ) woodlands are a diverse and widespread forest type in the western US and are home to many obligate and semi-obligate bird species. As such, this system is ideal for understanding wildfire resilience, or lack thereof, in terms of both vegetation and wildlife associations. This study evaluated post-fire vegetation structure and associated avian communities following three wildfires; one that burned one year prior to sampling (recent fire), and two that burned approximately 25 years previously (old fires). Vegetation characteristics and the habitat use of PJ-associated bird species were compared across severely burned patches, unburned refugia, and unburned sites outside of the burn perimeter. We expected wildfire to alter vegetation and bird usage for the first few years post-fire, which we observed in our recent burns. However, even 25-years post-fire, little recovery to PJ woodland had occurred and the associated bird communities had not returned, compared to unburned areas. No piñon regeneration was observed in any burned areas and no juniper regeneration in the recent fire. Piñon seedling densities in unburned sites and refugia averaged 80 ha−1 and 151 ha−1, respectively, while juniper seedling densities were 220 ha−1 in both habitat types. Habitat use for thirteen PJ-associated species were modeled, three of which (Woodhouse’s Scrub Jay, Ash-throated Flycatcher, and Virginia’s Warbler) used all habitats. Four species (American Robin, Gray Vireo, Black-throated Gray Warbler, and Gray Flycatcher) were essentially absent from the old burn habitat, reflecting species-specific need for mature piñon or juniper trees and/or greater canopy cover. Conversely, birds that were present in the old burn habitat (including Virginia’s Warbler, Blue-gray Gnatcatcher, Woodhouse’s Scrub-jay, Ash-throated Flycatcher, and Spotted Towhee) are typically associated with habitat edges, high shrub cover, or cavity nests. Altered vegetation structure and bird habitat use in burned areas 25 years post-fire are evidence for enduring conversion to non-forest vegetation types. However, unburned refugia embedded in burned areas maintain forest attributes and support obligate bird communities, supporting ecological function and biological diversity.more » « less
-
1. Amplified by warming temperatures and drought, recent outbreaks of native bark beetles (Curculionidae: Scolytinae) have caused extensive tree mortality throughout Europe and North America. Despite their ubiquitous nature and important effects on ecosystems, forest recovery following such disturbances is poorly understood, particularly across regions with varying abiotic conditions and outbreak effects. 2. To better understand post-outbreak recovery across a topographically complex region, we synthesized data from 16 field studies spanning subalpine forests in the Southern Rocky Mountains, USA. From 1997 to 2019, these forests were heavily affected by outbreaks of three native bark beetle species (Dendroctonus ponderosae, Dendroctonus rufipennis and Dryocoetes confusus). We compared pre- and post-outbreak forest conditions and developed region-wide predictive maps of post-outbreak (1) live basal areas, (2) juvenile densities and (3) height growth rates for the most abundant tree species – aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), lodgepole pine (Pinus contorta) and subalpine fir (Abies lasiocarpa). 3. Beetle-caused tree mortality reduced the average diameter of live trees by 28.4% (5.6 cm), and species dominance was altered on 27.8% of field plots with shifts away from pine and spruce. However, most plots (82.1%) were likely to recover towards pre-outbreak tree densities without additional regeneration. Region-wide maps indicated that fir and aspen, non-host species for bark beetle species with the most severe effects (i.e. Dendroctonus spp.), will benefit from outbreaks through increased compositional dominance. After accounting for individual size, height growth for all conifer species was more rapid in sites with low winter precipitation, high winter temperatures and severe outbreaks. 4. Synthesis. In subalpine forests of the US Rocky Mountains, recent bark beetle outbreaks have reduced tree size and altered species composition. While eventual recovery of the pre-outbreak forest structure is likely in most places, changes in species composition may persist for decades. Still, forest communities following bark beetle outbreaks are widely variable due to differences in pre-outbreak conditions, outbreak severity and abiotic gradients. This regional variability has critical implications for ecosystem services and susceptibility to future disturbances.more » « less
-
null (Ed.)Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.more » « less
-
Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways towards mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.more » « less
An official website of the United States government

Full Text Available